为什么可以给植物提供营养(什么为植物生长提供了养料)
问题一:植物需要什么营养? 用洗米水浇花。洗米水含氮、磷、钾等微量元素,即是复合肥料又是温和肥料,不伤花根,只要盆土不浸水随时可用。
碎蛋壳肥将蛋壳压碎埋入花盆中,是很好的肥料,可以使盆花生长茂盛,叶繁花艳。
家庭养花不宜常用化肥。栽培花卉所需要的氮、磷、钾等主要肥料在日常生活中都可以收集到。发霉不能食用的废花生、豆类、瓜子以及杂粮等都是含氮素的肥料,经过发酵作底肥或泡制成溶液为追肥,都能促使花木茁壮生长;鱼刺、碎骨、鸡毛、蛋壳以及人们剪下的指甲、头发等,都含有丰富的磷。把这些废料掺入旧的培养土里,加些水后装入塑料袋中放在角落里,经过一段时间的腐熟,便能变成极好的有机肥。若将这些废料泡制成溶液后追肥,可使家养盆花的花色鲜艳,果实累累。此外,发酵过的淘米水、生豆芽换下来的水、草木灰水,以及雨水和鱼缸里的废水等,都含有一定的氮、磷、钾,只要适量使用就会起到促进花木生长发育的作用。
问题二:植物的什么可以制造植物生长所需要的营养 你好;
有以下几种情况:首先植物的营养包括有机营养和无机盐两大类,光合作用的产物提供了植物生长所需的有机营养,无机盐(包括水)则主要通过根来吸收。
另外有几类特殊情况:1.如旋花科的菟丝子等寄生植物不能进行光合作用,它的有机营养则全部来自寄主;2.兰科部分植物如天麻的有机营养则完全来自共生的真菌;3.鹿蹄草科的水晶兰,兰科腐生物种如春兰、蕙兰等则通过光合作用提供自身以及共生真菌的有机营养,由根部真菌提供无机盐;4.豆科植物根部会有根瘤菌,可以进行固氮作用,提供植株有机营养。
问题三:植物生长需要的营养? 植物的元素组成
植物的组成十分复杂。一般新鲜植株含有75%~95%的水分,5%~25%的干物质。如果将干物质燃烧,其中的碳(C)、氢(H)、氧(O)、氮(N)等元素以二氧化碳、水、分子态氮和氮的氧化物形式跑掉,留下的残渣称为灰分。因此,植物必需的营养元素除碳、氢、氧外,可以分为氮及灰分元素两大类。到目前为止,已发现植物内化学元素大约有70多种,但是,这些化学元素在植物体内含量不同,而且所含的这些元素不一定就是植物生长必需的。有些元素可能是偶然被植物吸收,甚至还能大量积累;反之,有些元素对于植物需要虽然极微, 然而都是植物生长不可缺少的营养元素。
关于研究植物的必需营养元素,1939年Arnon 和Stout提出了高等植物必需营养元素三条标准:
1.如缺少某种营养元素,植物就不能完成其生活史;
2.必需营养元素的功能不能由其他营养元素所能代替;在其缺乏时,植物会出现专一的、特殊的缺互症、只有补充这种元素后,才能恢复正常、
3.必需营养元素直接参与植物代谢作用,例如酶的组成成分或参与酶促反应。
根据以上三条原则,确定了以下16种高等植物必需营养元素;
碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ga)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、钼(Mo)、硼(B)、氯(Cl)。
虽然所有高等植物已确定需要上述的16种营养元素,但需要量之间差别很大,一般分为大量元素和微量元素。
有益元素
随着科学技术特别是分析化学技术的发展,在16种必需营养元素之外,还有一类营养元素,它们对某些植物的生长发育具有良好的作用,或为某些植物在特定条件下所必需,但限于目前的科技发展水平,还没有证实它们是否是高等植物普遍所必需,人们称之为有益元素(Beneficialelement),其中主要包括硅(Si)、钠(Na)、钴(Co)、硒(Se)、镍(Ni)、铝(Al)等。
有益元素与植物生长发育的关系可分为两种类型:第一种是该元素是某些植物种群中特定的生物反应所必需,例如钴是根瘤固氮所必需的;第二种是某些植物生长在该元素过剩的特定环境中,经过长期进化后,逐渐变成需要该元素,例如甜菜对钠,水稻对硅等。此外,钴、硒等元素是动物所必需的微量元素,为了满足动物的需求,首先应在植物体内保持有一定的含量。
在必需营养元素中,碳、氢、氧来自空气中的二氧化碳、水,而其它元素几乎全部来自土壤。只有豆科植物可固定空气中的氮气,植物叶片也能从空气中吸收一部分气态养分,如二氧化硫等。由此可见,土壤不仅是植物生长的介质,而且也是植物生长所需要的矿质养分的主要供给者。实践证明,土壤有效态养分元素的含量对植物生长有明显影响。
人们相信,由于分析技术,尤其是化学药品的纯化技术的不断改进,有可能使植物体内许多含量极低的一些化学元素,进入必需营养元素的行列,也有可能再发现一些新的必需营养元素。
植物营养“三要素”
氮、磷、钾植物所需的营养三要素。
问题四:植物的【】可以制造植物生长所需要的营养 植物的【绿叶】可以制造植物生长所需要的营养。
大多数植物利用(阳光)、泥土中的(水分)和空气中的(二氧化碳),在叶子里自己制造(“食物”)。 植物生长所需要的营养物质主要是靠(绿叶)制造的。
问题五:水生植物需要什么营养 精华答案水生植物的养护水生植物的养护主要是水分管理,沉水、浮水、浮叶植物从起苗到种植过程都不能长时间离开水,尤其是炎热的夏天施工,苗木在运输过程中要做好降温保湿工作,确保植物体表湿润,做到先灌水,后种植。如不能及时灌水,则只能延期种植。挺水植物和湿生植物种植后要及时灌水,如水系不能及时灌水的,要经常浇水,使土壤水分保持过饱和状态。水生植物种植栽种水生植物,必须掌握一些原则,使其生长良好。1、日照:大多数水生植物都需要充足的日照,尤其是生长期(即每年四至十月之间),如阳光照射不足,会发生徒长、叶小而薄、不开花等现象。2、用土:除了漂浮植物不须底土外,栽植其它种类的水生植物,须用田土、池塘烂泥等有机黏质土做为底土,在表层铺盖直径一至二公分的粗砂,可防止灌水或震动造成水混浊现象。3、施肥:以油粕、骨粉的玉肥作为基肥,约放四、五个玉肥于容器角落即可,水边植物不须基肥。追肥则以化学肥料代替有机肥,以避免污染水质,用量较一般植物稀薄十倍。4、水位:水生植物依生长习性不同,对水深的要求也不同。漂浮植物最简单,仅须足够的水深使其漂浮;沉水植物则水高必须超过植株,使茎叶自然伸展。水边植物则保持土壤湿润、稍呈积水状态。挺水植物因茎叶会挺出水面,须保持五十公分至一公尺左右的水深。浮水植物较麻烦,水位高低须依茎梗长短调整,使叶浮于水面呈自然状态为佳。5、疏除:若同一水池中混合栽植各类水生植物,必须定时疏除繁殖快速的种类,以免覆满水面,影响睡莲或其它沉水植物的生长;浮水植物过大时,叶面互相遮盖时,也必须进行分株。
问题六:植物生长需要的营养物质是由什么吸收的 植物生长吸收需要的营养物质的部位如下:
(1)矿物质:根部为主,叶子也可以吸收;
(2)气态养分:叶子为主,根部也可以吸收。
地球上的一切植物为了保证正常的新陈代谢活动和基本生长发育,都需要从自身所处的外界环境中源源不断地吸收物质和能量,用于满足正常的物质代谢和能量代谢,这些所吸收的物质和能量就是植物的营养。 对世界上每一种农作物来说,所吸收的能量主要来自于太阳的直接光照和间接光照,只有极少数量的温室作物,例如室内种植蘑菇和大棚温室内种植的蔬菜,在连阴天的情况下,农民为了保证其正常生长而进行灯光照谢,这种情况下,提供农作物生长的能量就来自于灯光辐射。
问题七:花卉生长需要哪些营养元素? --氮在花卉生长中的作用。氮可促进茎、叶的生长(营养生长)。氮肥供应充足时,叶大而鲜绿,光合作用速度高,叶片功能期延长,花卉生长健壮。氮过少,则花卉植株矮小,叶小,色淡,老叶易变黄脱落,节间短,枝条细弱等。但是氮肥也不能过多,过多则会使茎叶徒长,抑制花芽形成,且枝叶柔嫩,易受病虫侵害。
一年生花卉幼苗期需氮肥量较少,随着生长而逐渐增多。两年生和宿根花卉在春季需氮肥较多。观叶花卉在整个生长期均需较多氮肥。观花、观果植物在开花阶段需氮肥较少,施多了会推迟花期,或落花、落果。
磷是花卉细胞核的组成部分。磷也是植物体光合作用,蛋白质、脂肪合成,碳水化合物转化等过程中必不可少数民的元素。所以缺磷时植物蛋白质合成受阻、新的细胞分裂和生长都受影响,以致幼芽和根部生长缓慢、叶小、分枝或分叶减少,植株特别矮小、叶色暗绿、生长慢。开花小而少,也影响结果。开花和成熟期都延迟。增施磷肥可促进花卉生殖生长,花大、色艳、果大。
锰是花卉叶绦体的结构成分。锰还参与光合作用、氮素利用等多种生理活动,所以缺锰时叶绿化结构破坏、解体,幼叶出现缺绿及坏死斑点。
钾参与了花卉的生理活动。在碳水化合物的合成和运输过程中,钾促进了纤维素和木质素的合成,所以钾可使花卉茎干粗壮,抗病害、抗旱、抗寒能力提高,并使花色鲜艳。缺钾时值株柔弱,叶较小,叶片出现皱缩,叶尖及叶缘常出现枯焦状。
钙是构成细胞壁的元素。缺钙时,植物幼嫩的分生组织受害,影响细胞分裂,不能形成新的细胞壁,生长受抑制,严重时幼嫩器官(根尖、茎尖)溃烂坏死。钙可以降低土壤的酸度,粘重土施用石灰可使土质疏松。蛋壳中含钙量较多,家族养花可把蛋壳敲碎后施入。
镁是叶绿素的组成部分。缺镁往往引起叶子变黄、杂色、缺绿、叶脉仍绿,脉间变黄,有时呈红紫色,严重缺镁时则形成褐斑坏死。
硫是蛋白质的组或部分。硫也与叶绿素的合成有关,所以缺硫时,植株矮小,嫩叶的叶片失绿,严重时叶脉也失绿,整个叶片变白。
铁是花卉合成叶绿素的元素。缺铁就会使植物叶片失绿,叶脉仍为绿色,幼叶病征特别明显,严重时叶片几科变成乳白色。土壤中PH值偏碱时容易缺铁。如果发现缺铁症状,可施硫酸亚铁,又称黑矾,浓度为0.1%-0.2%的溶液。
硼能促进花卉开花。硼能促进开花、授粉、结果、并能促进糖分在植物体内的运输。植物根系的生长也需要硼。虽然植物对硼元素需要量很小,但如缺少,嫩叶会失绿,叶缘向上卷曲,顶叶及幼根的生长点坏死。缺硼时可用0.1%的硼酸水溶液喷于叶面作根外施肥用,可使花色鲜艳,花大果大。
问题八:植物的生长需要什么 ? 植物的元素组成植物的组成十分复杂。一般新鲜植株含有75%~95%的水分,5%~25%的干物质。如果将干物质燃烧,其中的碳(C)、氢(H)、氧(O)、氮(N)等元素以二氧化碳、水、分子态氮和氮的氧化物形式跑掉,留下的残渣称为灰分。因此,植物必需的营养元素除碳、氢、氧外,可以分为氮及灰分元素两大类。到目前为止,已发现植物内化学元素大约有70多种,但是,这些化学元素在植物体内含量不同,而且所含的这些元素不一定就是植物生长必需的。有些元素可能是偶然被植物吸收,甚至还能大量积累;反之,有些元素对于植
问题九:花木需要哪些营养成分! 花木生长需要氮、磷、钾、镁、硼、锌和钼等等微量元素。
氮是组成蛋白质、酶、核酸、叶绿素和其它重要生命物质的基本元素。氮能使植物枝叶繁茂,青葱翠绿,发旺生长。植物缺氮,会长得弱小,老叶先变黄,甚至脱落,新叶长得又小又黄。如果过量,则造成植物异常高大,推迟花期,果实品质降低,抗病能力变差,谷物类植物则容易倒伏。豆科植物能把空气中的氮转化成为可吸收的养料。因此豆科植物及它们的残梗可以做氮肥。另外粪肥里也富含氮。落叶、绵籽、干血、羽毛、毛发等天然肥料也都含有较多的氮。
磷是植物开花、结果、结籽所必需的重要元素。磷还能促进植物根系生长,增强植物的抗病能力。植物如果缺磷,会发育不良,从老叶起先是叶脉由红变紫,严重时叶和茎,谷物甚至连谷粒都会出现紫色;推迟成熟,花果减少,不熟自落,种子干瘪不育。土壤酸性太强,会造成植物对磷吸收不良。磷灰石粉、骨渣、鸟粪、碱性熔渣(或称托马斯磷肥)、草木灰,等天然肥料里都含有磷。
钾是帮助植物吸收和平衡其它元素、调节水和空气流通所必需的元素。钾还能帮助植物制造和储藏淀粉、糖、油脂和蛋白质,增强植物的抗旱、抗寒和抗病能力。植物如果缺钾,会发育不良,从老叶起先是叶尖变黄,继而叶子边缘变焦,最后干枯脱落,果实减少,且品质降低,根系瘦弱。花岗石粉(含钾长石)、海绿石砂、海藻、草木灰,等天然肥料都可做钾肥。不过,过量钾会阻碍植物吸收其它元素。
钙能使植物的枝茎长得结实、牢固,使根毛和幼芽长得好。它还能中和过多的酸,起到调节酸碱平衡的作用,促进豆科植物的根瘤生长,促进土壤中微生物和蚯蚓的活动和繁殖,使偿物更好的吸收钾、硼、和镁等元素。植物缺钙会造成枝干开裂,根系瘦弱,幼叶翻卷,老叶打皱,幼芽枯死。石灰石、白云石、草木灰、骨渣、牡蛎壳,等天然肥料中都含有较多的钙。
镁是能帮助植物吸收氮、磷、硫等元素的重要元素。植物缺镁,从老叶起叶脉间出现黄色斑点,然后变成橙色,最后变焦,枯干凋落。白云石、玄武岩石、落叶、锯木屑、骨渣、绵籽,等天然肥料中都含有镁。
硫是组成蛋白质和某些氨基酸的元素,它也促进植物体内的许多化学反应。硫是使洋葱科植物和某些十字花科植物发出特殊气味的元素。它也能中和土壤中过多的碱,起调节酸碱平衡的作用。植物缺硫,老叶、新叶都会变黄。一般来说,雨水中含的硫已足够植物用了。
铁是光和作用所必需的元素。它还能影响某些植物花的颜色。植物缺铁,叶子从幼到老会出现黄斑,但叶脉和边沿仍是绿色。玄武岩石、海藻中含有铁。
硼协助糖分和水在植物体内的运送。植物缺硼会造成幼芽褪色死亡,果实变形,核心焦枯,根的中心也会变焦枯。
锌能帮助植物调节荷尔蒙的平衡,尤其是生长素的活动。植物缺锌会造成新叶小,幼芽少,叶子上出现死斑,形状扭曲。
氯是光合作用所必需的元素。它也能中和过多的碱,起调节酸碱平衡的作用。
铜也是光合作用所必需的元素。植物缺铜会造成叶子褪色,变得细长,幼芽死亡。
锰是制造叶绿素所必需的元素。植物缺锰会造成叶脉变白,叶子上出现死斑,植物矮小。
海绿砂石、碱性熔渣和海藻里都含有多种微量元素。
?
营养液为植物生长提供了哪些条件 营养液为植物生长提供了什么条件1、营养液为植物生长提供植物固定根系的环境。提供水分和各种矿物及微量元素营养。根系呼吸生长的空气和水分。便于植物的吸收利用,多种营养物质,如铁,镁等离子。
2、营养液是采用环境生物生态共生技术和菌根共生原理经生物发酵、化学螯合、物理活化等工艺合成的一种新型营养液。营养液是无土栽培的关键,不同作物要求不同的营养液配方。世界上发表的配方很多,但大同小异,因为最初的配方本源于对土壤浸提液的化学成分分析。营养液配方中,差别最大的是其中氮和钾的比例。
植物是怎样获得营养的?光合作用的过程:1.光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。我们每时每刻都在吸入光合作用释放的氧。我们每天吃的食物,也都直接或间接地来自光合作用制造的有机物。那么,光合作用是怎样发现的呢?
光合作用的发现 直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么。1771年,英国科学家普利斯特利发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死。因此,他指出植物可以更新空气。但是,他并不知道植物更新了空气中的哪种成分,也没有发现光在这个过程中所起的关键作用。后来,经过许多科学家的实验,才逐渐发现光合作用的场所、条件、原料和产物。下面介绍其中几个著名的实验。1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。
1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵。通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围。恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所。
光合作用的过程:
光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。
暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
光合作用的重要意义 光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。光合作用的意义可以概括为以下几个方面;
第一,制造有机物。绿色植物通过光合作用制造有机物的数量是非常巨大的。据估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球上每年工业产品的总产量。所以,人们把地球上的绿色植物比作庞大的“绿色工厂”。绿色植物的生存离不开自身通过光合作用制造的有机物。人类和动物的食物也都直接或间接地来自光合作用制造的有机物。
第二,转化并储存太阳能。绿色植物通过光合作用将太阳能转化成化学能,并储存在光合作用制造的有机物中。地球上几乎所有的生物,都是直接或间接利用这些能量作为生命活动的能源的。煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的。
第三,使大气中的氧和二氧化碳的含量相对稳定。据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒)。以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完。然而,这种情况并没有发生。这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定。
第四,对生物的进化具有重要的作用。在绿色植物出现以前,地球的大气中并没有氧。只是在距今20亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势以后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展。由于大气中的一部分氧转化成臭氧(O3)。臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物开始逐渐能够在陆地上生活。经过长期的生物进化过程,最后才出现广泛分布在自然界的各种动植物。
植物是怎样提供营养的?
植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放氧气. 能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)